垃圾滲濾液是指來源于垃圾填埋場中垃圾本身含有的水分、進入填埋場的雨雪水及其他水分,扣除垃圾、覆土層的飽和持水量,并經歷垃圾層和覆土層而形成的一種高濃度的有機廢水。還有堆積的準備用于焚燒的垃圾滲漏出的水分。
一、垃圾滲濾液的產生階段
垃圾滲濾液的性質隨著填埋場的運行時間的不同而發生變化,這主要是由填埋場中垃圾的穩定化過程所決定的。垃圾填埋場的穩定化過程通常分為五個階段,即初始化調整階段(Initial adjustment phase)、過渡階段(Transitionphase)、酸化階段(Acid phase)、甲烷發酵階段(Methanefermentation phase)和成熟階段(Maturation phase)。
1、初始調節階段:垃圾填入填埋場內,填埋場穩定化階段即進入初始調節階段。此階段內垃圾中易降解組分迅速與垃圾中所夾帶的氧氣發生好氧生物降解反應,生成二氧化碳(CO2)和水,同時釋放一定的熱量。
2、過渡階段:此階段填埋場內氧氣被消耗盡,填埋場內開始形成厭氧條件,垃圾降解由好氧降解過渡到兼性厭氧降解。此階段垃圾中的硝酸鹽和硫酸鹽分別被還原成氮氣(N2)和硫化氫(H2S),滲濾液PH開始下降。
3、酸化階段:當填埋場中持續產生氫氣(H2)時,意味著填埋場穩定化進入酸化階段。在此階段對垃圾降解起主要作用的微生物是兼性和專性厭氧細菌,填埋氣的主要成分是二氧化碳(CO2)、滲濾液COD、VFA和金屬離子濃度繼續上升至中期達到z大值,此后逐漸下降;PH繼續下降到達最低值,此后逐漸上升。
4、甲烷發酵階段:當填埋場H2含量下降達到最低點時,填埋場進入甲烷發酵階段,此時產甲烷菌把有機酸以及H2轉化為甲烷。有機物濃度、金屬離子濃度和電導率都迅速下降,BOD/COD下降,可生化性下降,同時PH值開始上升。
5、成熟階段:當填埋場垃圾中易生物降解組分基本被降解完后,垃圾填埋場即進入成熟階段。此階段由于垃圾中絕大部分營養物質已隨滲濾液排出,只有少量微生物對垃圾中的一些難降解物質進行降解,此時PH維持在偏堿狀態,滲濾液可生化性進一步下降,BOD/COD會小于0.1。但是滲濾液濃度已經很低。
二、處理工藝的比較選擇
城市垃圾填埋場滲濾液的處理一直是填埋場設計、運行和管理中非常棘手的問題。滲濾液是液體在填埋場重力流動的產物,主要來源于降水和垃圾本身的內含水。由于液體在流動過程中有許多因素可能影響到滲濾液的性質,包括物理因素、化學因素以及生物因素等,所以滲濾液的性質在一個相當大的范圍內變動。一般來說,其pH值在4~9之間,COD在2000~62000mg/L的范圍內,BOD5從60~45000mg/L,重金屬濃度和市政污水中重金屬的濃度基本一致。
三、滲濾液處理工藝的現狀
垃圾滲濾液的處理方法包括物理化學法和生物法。物理化學法主要有活性炭吸附、化學沉淀、密度分離、化學氧化、化學還原、離子交換、膜滲析、氣提及濕式氧化法等多種方法,在COD為2000~4000mg/L時,物化方法的COD去除率可達50%~87%。和生物處理相比,物化處理不受水質水量變動的影響,出水水質比較穩定,尤其是對BOD5/COD比值較低(0.07~0.20)難以生物處理的垃圾滲濾液,有較好的處理效果。但物化方法處理成本較高,不適于大水量垃圾滲濾液的處理,因此垃圾滲濾液主要是采用生物法。
生物法分為好氧生物處理、厭氧生物處理以及二者的結合。好氧處理包括活性污泥法、曝氣氧化池、好氧穩定塘、生物轉盤和滴濾池等。厭氧處理包括上向流污泥床、厭氧固定化生物反應器、混合反應器及厭氧穩定塘。
四、滲濾液處理工藝介紹
垃圾滲濾液具有不同于一般城市污水的特點:BOD5和COD濃度高、金屬含量較高、水質水量變化大、氨氮的含量較高,微生物營養元素比例失調等。在滲濾液的處理方法中,將滲濾液與城市污水合并處理是最簡便的方法。但是填埋場通常遠離城鎮,因此其滲濾液與城市污水合并處理有一定的具體困難,往往不得不自己單獨處理。常用的處理方法如下
1、好氧處理
用活性污泥法、氧化溝、好氧穩定塘、生物轉盤等好氧法處理滲濾液都有成功的經驗,好氧處理可有效地降低BOD5、COD和氨氮,還可以去除另一些污染物質如鐵、錳等金屬。在好氧法中又以延時曝氣法用得最多,還有曝氣穩定塘和生物轉盤(主要用以去除氮)。下面將分別予以介紹。
2、傳統活性污泥法
滲濾液可用生物法、化學絮凝、炭吸附、膜過濾、脂吸附、氣提等方法單獨或聯合處理,其中活性污泥法因其費用低、效率高而得到最廣泛的應用。美國和德國的幾個活性污泥法污水處理廠的運行結果表明,通過提高污泥濃度來降低污泥有機負荷,活性污泥法可以獲得令人滿意的垃圾滲濾液處理效果。例如美國賓州Fall Township污水處理廠,其垃圾滲濾液進水的COD為6000~21000mg/L,BOD5為3000~13000mg/L,氨氮為200~2000mg/L。曝氣池的污泥濃度(MLVSS)為6000~12000mg/L,是一般污泥濃度的3~6倍。在體積有機負荷為1.87kgBOD5/(m3·d)時,F/M為0.15~0.31kgBOD5/(kgMLSS·d),BOD5 的去除率為97%;在體積有機負荷為0.3kgBOD5/(m3·d)時,F/M為0.03~0.05kg BOD5/(kgMLSS·d),BOD5的去除率為92%。該廠的數據說明,只要適當提高活性污泥法濃度,使F/M在0.03~0.31kgBOD5/(kgMLSS·d)之間(不宜再高),采用活性污泥法能夠有效地處理垃圾滲濾液。
許多學者也發現活性污泥能去除滲濾液中99%的BOD5,80%以上的有機碳能被活性污泥去除,即使進水中有機碳高達1000mg/L,污泥生物相也能很快適應并起降解作用。在低負荷下運行的活性污泥系統,能去除滲濾液中80%~90%的COD,出水BOD5<20mg/L。對于COD 4000~13000 mg/L、BOD51600~11000mg/L、NH3-N 87~590mg/L的滲濾液,混合式好氧活性污泥法對COD的去除率可穩定在90%以上。眾多實際運行的垃圾滲濾液處理系統表明,活性污泥法比化學氧化法等其它方法的處理效果更佳。
3、低氧好氧活性污泥法
低氧-好氧活性污泥法及SBR法等改進型活性污泥流程,因其具有能維持較高運轉負荷,耗時短等特點,比常規活性污泥法更有效。同濟大學徐迪民等用低氧-好氧活性污泥法處理垃圾填埋場滲濾液,試驗證明:在控制運行條件下,垃圾填埋場滲濾液通過低氧-好氧活性污泥法處理,效果卓越。最終出水的平均COD、BOD5、SS分別從原來的6466mg/L、3502mg/L以及239.6mg/L相應降低到COD<300mg/L、BOD5<50mg/L(平均為13.3mg/L)以及SS<100mg/L(平均為27.8mg/L)。總去除率分別為COD 96.4%、BOD5 99.6%、SS 83.4%。
處理后的出水若進一步用堿式氯化鋁進行化學混凝處理,可使出水的COD下降到1 00mg/L以下。
兩段法處理滲濾液的氮、磷也均較一般生物法為佳。磷的平均去除率為90.5%;氮的平均去除率為67.5%。此外該法運行彌補厭氧-好氧兩段生物處理法第一段形成NH3-N較多,導致第二段難以進行和兩次好氧處理歷時太長的不足。